Energy Engineering Analysis Program

Installation Energy Modeling using FEDS to Analyze Future Scenarios

Doug Dixon
Pacific Northwest National Laboratory
24 January 2007

FEDS Energy Assessment Goals

- Establish baseline for installation energy consumption and costs, including:
 - Building load analysis by end-use
 - Building energy use intensity (MMBtu/ft²)
 - Fuel consumption by building type
- Identify and prioritize cost-effective energy projects for funding via third-party financing (ESPC, UESC), and/or government funding (ECIP, OMA). Provide initial life-cycle cost analysis.
- Estimate impact on energy demand and consumption from building construction, demolition, renovation, utility modernization, O&M, and energy-specific retrofits.
- Assess impact of various scenarios for CEP operation, including partial or complete decentralization, building load reduction, cogeneration, thermal storage, etc.

FEDS Assessments Completed

Facility Energy Decision System (FEDS) What is it?

FEDS is a fuel-neutral, technology independent, comprehensive method for quickly and objectively identifying building energy efficiency improvements that offer maximum savings

FEDS Design Goals

- FEDS was designed with two major purposes in mind:
 - estimating current energy consumption for all energy systems under consideration
 - determining the minimum life-cycle-cost retrofits to systems within a facility and on an installation (considering all interactive effects) and includes estimating:
 - pre- and post-retrofit consumption
 - first cost of the retrofits
 - recurring O&M costs for the retrofits
 - value of the change in annual energy consumption, demand, and annual O&M requirements
 - net present value of the retrofits

FEDS is Unique

Financial options

Life-Cycle Cost Optimization

- FEDS chooses the retrofit technology that provides the required service at the minimum life-cycle cost
- ► FEDS accounts for energy, demand, O&M, and replacement costs over the study period
- ► FEDS considers the interactions between building systems as well as between buildings

Financing Options

- ► FEDS allows:
 - Modification of project cost components
 - Comparison of various financing mechanisms:
 - Appropriated or site funding
 - Utility or third-party loans
 - Leases
 - Energy Savings Performance Contracts (ESPC)

Completely Updated Central Energy Plants and Thermal Loops Module

- FEDS 6.0 will now enable much more detailed specification and analysis of any number of central energy plants and their associated loops and can determine:
 - The total load from all connected buildings and other central plant equipment, both at baseline and throughout the retrofit optimization process
 - The value of steam, hot water, or chilled water delivered to each building, considering central plant equipment types and efficiencies, source fuel costs, auxiliary power requirements, O&M costs, loop losses, and other parameters
 - The cost effectiveness of various decentralization options including:
 - Which individual technologies served centrally should be replaced with distributed technologies,
 - Which building sets should be decentralized,
 - Which thermal loops of a central energy plant should be abandoned with all attached buildings becoming decentralized, and
 - Which central energy plants should be abandoned with all attached loops becoming abandoned and all attached buildings becoming decentralized
 - This central plant and thermal loop analysis occurs automatically in conjunction with optimization of building energy systems.

Evaluating Scenarios Using FEDS

- Analyze fuel-switching
- ► Value "deals" (ESPC, UESC, future avoided costs)
- Assess impacts of change (New building construction, renovation, demolition, major upgrades to CEPs and thermal distribution systems, and energy-specific retrofit projects)
- Evaluate sustainable building designs
- Apportion reimbursable customers
- Central plant and thermal loop analysis (optimize amount of decentralization)
- Evaluate alternative technology applications

Rock Island Arsenal Scenarios

- Implement all life-cycle cost effective retrofits for lighting, building envelope, HVAC systems, building-level boilers, and potable water
- Central Plant Options (to reduce the future replacement cost for the plant)
 - Optimize building insulation to reduce heating/cooling loads
 - Roof insulation only
 - Roof and wall insulation
 - Convert from steam to hot water for distribution system
 - Eliminate one complete distribution loop and provide heating/cooling with ground source heat pumps, gasfired boilers, and infrared heaters

Redstone Arsenal Steam Systems Options Study

- Baseline
 - Status quo
- Short-term options (1-9 years)
 - Option 2 sell NASA summer steam at discount
 - Option 3 install new absorption chillers to use summer steam
 - Option 7 install building-level boilers to prune branches from steam system for <u>winter</u> shutdown
- ► Long-term options (10-25 years)
 - Option 8 continue on purchased steam at lower rate, using Option 7 pruning groups (year-round pruning) in years 10-25
 - Option 9 complete summer shutdown of steam system
 - Option 10 complete decentralization

#7: Selected Winter PruningFY2003 TMY Data

Fort Jackson Scenarios

The following options were evaluated in this study:

- Continued operation of existing systems with periodic equipment replacements as necessary.
- The replacement of central boilers and hot water distribution piping with building boilers and natural gas piping.
- Central cogeneration of electricity and hot water.
- Self-generation of electricity for peak demand shaving.
- ► Central chilled water storage.

FEDS Methodology

The assessment process includes:

- Collection of existing information on real property, central energy systems, energy consumption and prices, past energy projects, and planned infrastructure changes.
- Walk-through audits of selected representative buildings (25-30 buildings).
- Development of site energy model using the FEDS software and calibration of the model to match actual energy consumption.
- Site energy modeling and analysis to identify retrofit opportunities and provide initial life-cycle cost assessment.
- Prepare assessment report with detailed spreadsheet on all cost effective energy retrofit opportunities.

Summary

- ► FEDS provides a baseline from which the cost effectiveness of various technology options can be measured.
- FEDS allows "what if's" to be analyzed on a consistent basis.
- ► FEDS compares different funding/financing options and determines the order of magnitude investment requirements.
- ▶ Projects that are identified with FEDS normally require more detailed engineering analysis before submission as appropriated projects (ECIP, OMA, AWCF, etc.).

